Likelihood maximisation techniques for ranging gunfire over grassland

Jordan A. Parrya,*, Kirill V. Horoshenkova, Duncan P. Williamsb

a University of Sheffield, Dept. of Mech Engineering, Sheffield, England, UK
b Defence Science and Technology Laboratory, Salisbury, England, UK

Abstract

A study into acoustic parameter inversion in the presence of a non-moving, homogeneous atmosphere and grassland impedance ground is carried out using methods of likelihood maximisation. Measured frequency-dependent sound pressure level and power spectra for a blank firing pistol are used to generate simulated data with added Gaussian error to represent variations usually present in real life experiments. Inference is carried out using maximum likelihood estimation (MLE) and maximum a priori (MAP) where model parameters are either given as known or restricted to some uncertain distribution bounded by realistic conditions. The quality of inference is assessed visually and statistically as the error between the true and inferred predictions for a given propagation range. Application of a prior (MAP) greatly improves inference accuracy compared to the sole maximisation of the likelihood function (MLE). It is shown that the use of a single octave band frequency window does not improve the quality of inference, whereas combinations of several low frequency octave bands do. Exact quantification of the true values of the ground and source height are seemingly less important as range increases beyond 500m. Although the techniques presented in this paper are for military/security applications, they are readily applicable to other acoustical problems, e.g. source characterisation in engineering noise control. The methods adopted are likely to benefit from higher-dimensional models, i.e. inhomogeneous atmospheres, complex terrain or urban environments.

1. Introduction

Predicting outdoor sound is a complex problem particularly when there is an uncertainty in the parameters involved. This makes the inverse problem, or the inference of the non-acoustical parameters affecting outdoor sound propagation from the acoustical data a rather difficult task. This is the situation where an array of statistical concepts and methods can be used to infer a parameter while adjusting for the uncertainty present [1]. Only recently has significant works been published by D. K. Wilson et al, removing some of the ambiguity surrounding uncertainty quantification within outdoor sound propagation [2]. Two cases were studied: a simple homogenous atmosphere then a near-ground propagation in a turbulent atmosphere. It showed which sampling methods proved more accurate, dependant on which parameter uncertainty was more dominant. Citing this work, further research by T. Van Renterghem and D. Botteldooren looked at quantifying the variation in downwind sound propagation over a grassland impedance ground [3]. A large variation was found, strongly dependent on sound frequency, source height, receiver height, and propagation distance. The variation ranges give insight to this systematic uncertainty when performing short-range measurements. However, the effect of the uncertainties and their interactions is still not well understood.

These works suggest to use statistics in combination with outdoor acoustics to understand the uncertainty the problem presents. The art of using statistically justified methods in the already complex outdoor setting usually requires high-level statistical knowledge combined with thorough understanding of acoustical principles. Otherwise, the inference is likely to yield statistically insignificant results. Extending this work to specific sources can complicate matters further, i.e. gun fire sources which spectrum is limited to very low frequencies of sound. Work on gun detection is of obvious importance in defense applications, yet it is still an understudied area particularly in the case of large-scale outdoor situations. There has been works (e.g. [4]) in which methods for localization of small arms fire using acoustic measurements of muzzle blast with, and without, ballistic shock wave arrivals were studied. It was found that accuracy of detection was greatly dependant on the classification of the firearm and bullet...
themselves, making wider applicability limited. A more recent paper by one of authors of [4] attempted to expand the model using the *miss angle*, i.e. the angle in which the bullet from a small arms fire passed the acoustic sensor node, to infer the range over a given 2-D space [5]. This method improved by only having to know a known approximate range for the acoustic impulses i.e. gun barrelling, caliber, rather than requiring exact classification of the fire-arms and components as in the authors former study. It was shown that the error greatly increased with the increase in miss angle, and it was suggested that the method would be relatively accurate for known stationary geometric areas, i.e. counter-sniper zone. This is an improvement for stationary 3D capture, but there was lot of inherent reliance on known parameters, like impedance ground, and a fair amount of information about the firearm source. More recent work by J. A. Parry et al. used a simple *excess attenuation* model, with and without a *priori* knowledge to infer the source range and simulated data for sound propagation from a blank firing pistol [6]. The ground in this instance was assumed to be vegetative, creating an *acoustically softer* ground. It was found that errors could be reduced when a priori was applied. A greater accuracy (<±5 m) of range detection was achieved when the likelihood space was filtered in octave bands in the infrasonic frequency range. It was noted that *measuring* the value of excess attenuation directly would require some extra mathematical computation, but this study still showed the powerful accuracy of this method specifically and also how these statistical techniques could be expanded directly to other models.

This paper aims to study the effect of geometrical uncertainties on outdoor sound propagation of a gunshot and performance of some parameter inversion methods. We show that a relatively simple outdoor propagation model and maximum likelihood method can be applied effectively to infer the location of the gunshot with limited prior knowledge at a short and medium range. The study assumes a *grassland* impedance, more similar to wilder areas of United Kingdom. The methods applied also aim to show the effect of specific interactions of uncertainties in the parameters of the model. This paper makes use of two differing statistical ideologies to maximise the *likelihood function*: frequentist and Bayesian. The frequentist method of *maximum likelihood* (or *log-likelihood*) estimation (MLE) makes use of the likelihood function in combination with the mean and variance to gather estimates of given parameters [7]. MLE methods have been successfully used in acoustical research, with good examples in the forward case to evaluate models forimpulsive noise propagation [8] or for acoustic source localisation in wireless sensor networks [9]. These works are a good example of how MLE methods can be applied to given uncertain scenarios and used to improve understanding of the effects of a given uncertainty on sound propagation, while also being used for direct parameter inference.

The Bayesian *Maximum a Posteriori* (MAP) method also makes use of the likelihood function, but it also incorporates a *prior*, which is the quantification of beliefs or known knowledge [10]. The use of Bayesian methods is more novel in outdoor sound propagation. A recent study successfully used Bayesian inference to optimise the selection of parameters in models used for sound propagation outdoors [11] and in porous media [12]. They however did not successfully detail the uncertainty itself, perhaps because some departure from model simplicity in their approach [11].

The work by Xiang and Fackler [12] defines the power of Bayesian statistics in application to acoustics in general rather than for outdoor sound propagation. This work demonstrates how Bayesian statistics can be used to improve model selection and parameter inference techniques in acoustics. This work suggests that Bayesian methods have their advantages when applied correctly, but they can easily be misused or complicated meaning that intricacies of the physical effects can be overlooked.

Our paper aims to illustrate how these statistical ideas can be effectively applied to study the uncertainty in outdoor sound propagation and how two different statistical approaches can influence the effectiveness of the inference process and quantified in terms of the inversion error. Simulations are used to mimic the repeated measurement to inform the inference process. It is assumed that sound propagates in a non-moving homogenous atmosphere over a *grassland* impedance ground. The impedance ground, and other source geometry parameters are studied under known and uncertain conditions, solely and in combination, to establish whether or not some particular uncertain conditions have a significant influence on the inference process.

Observed data are synthesised using a popular model for short-/mid-range sound propagation that is assumed to be *perfect*, i.e. given a set of geometrical, ground and source parameters this model would predict the exact true value of the sound pressure at the receiver position. Gaussian (normal) noise is then added to simulate the uncertainties present in the measurements. Observation sample size is kept small (*n = 10*) to test the effects of limiting information on the performance of the model. Estimates of the range are gathered from each sample data set either solely from the *maximisation of the log-likelihood* or via *Maximum a Posteriori* by applying some *prior beliefs* as a statistical function. Estimations are performed for a combination of the parameters being given as known, or uncertain. The uncertainty here is some flat *uniform distribution* where no information on which parameter values are more likely is given. The prior considered here is chosen selectively around the true parameter value with a *normal distribution*, *N*(μ, σ²), with a mean (*μ*) and constant variance (*σ²*). Prior beliefs are only applied to the range parameter. The function will also have its frequency range restricted to specific octave bands to further assess whether inference or parameter interactions change compared to the initial broadband frequency range.

The primary question of this paper is: *How well can a simple method recover an unknown range in an outdoor sound propagation setting?* We are also asking: (i) Which, if any, combinations of uncertainty inside parameters cause more errors than others? (ii) What is the effectiveness of simple statistical techniques in inferring the source range? (iii) How effectively the source of a gunshot could be detected, over a grassy floor, using these methods? The answer to the primary question is likely to have an immediate impact on current practices while the other specific questions will help improve the basic understanding of the uncertainty in outdoor sound propagation. This work will also pave the way to further statistical improvements to acoustic inversion methods in the presence of uncertainties, with direct application to improving gunshot detection practices.

This paper is structured in the following manner. Section 2 describes the acoustical model and source characterisation. Section 3 details the statistical likelihood methodologies. Section 4 reviews the results from the simulations, firstly for broadband sounds and then at octave filtered frequency bands. Finally, Section 5 is the conclusions from this study.

2. Research methods

2.1. Gun source evaluation

Acoustical characterisation of gunfire shows it has three main components: (i) muzzle blast, (ii) mechanical action; and (iii) supersonic projectile [13]. The gun used in this study is a *Bruni Mod. 92 Top Venting 8 mm Blank Pistol*. A blank pistol must be used due to the obvious security issues and to obey with the statutory gun law in the UK. This means that the third contributing sound source of the projectile is not present in this experiment. Acoustic
recordings of the gunfire are taken in the *anechoic chamber* at the University of Sheffield. The hilt of the gun is placed on the floor and 3m away from a GRAS 46AN 1/2” Microphone which is also placed on the floor. The frequency range of this microphone is 0.5–10000 Hz. The microphone is connected to a NI DAQ PC and digitised at 1 kHz without any filtering except the anti-aliasing filter provided as standard in the NI DAQ PC. The level of background noise in the chamber was negligibly small in comparison with the level of the gunshot (with the SNR > 100 dB). Recordings made were narrowed down to four clean recordings to study the reproducibility of the source spectrum with minimum interference. Fig. 1 presents the Fourier spectra plotted against the frequency (ω) in Hertz of the four clean (i.e. without unwanted sounds heard during recording) gunshots. The frequency spectra show strong peaks around < 5Hz and 50Hz which level is consistent within < ±1dB between individual gunshots. Frequencies over 500 Hz were omitted due to their lack of energy. The time and Fourier spectra look remarkably alike to other experimental data recorded for other types of gunfire[14,15].

An important quantity that can be established from these recordings is the sound power level (SWL or L_w for hereon) of the gunshot. The SWL of the source placed on the ground can be defined as

$$L_w(\omega) = L_p(\omega) + 10 \log (2\pi f^2)$$ \hspace{1cm} (1)

where r is the range from the sound source and L_p is the sound pressure level (SPL from hereon). The range from the source is known to be 3 m, resolving the second term in Eq. (2). The SPL is a measure of the frequency-dependent pressure measured against the reference pressure (p_{ref} = 2×10^{-6}Pa). The SPL is calculated from

$$L_p(\omega) = 10 \log \left(\frac{p_{ref}^2(\omega)}{p_{ref}^2} \right)$$ \hspace{1cm} (2)

where p_{ref} = 20μPa is the reference sound pressure. The mean is taken from the measured pressures (p_{x}), as seen in the left of Fig. 1, to then obtain a given SPL. This gives us a representative frequency dependent SWL of the gunshot (see RHS of Fig. 1) ready to be used to generate long range observations.

2.2. Acoustical predictions

Acoustical predictions are made with one receiver across a 2-D plane as shown in Fig. 2. Ignoring problems, such as angle detection for a 3-D sound propagation case allows for better investigation into the underlying uncertainties. In practical applications the measured quantity at the receiver is the SPL. The calculated SWL is used to simulate the SPL (L_p), that would be measured at a given range. According to the constraints from the assumptions of the homogenous atmosphere and from impedance ground, the frequency dependent SPL at a given range can be calculated as [16]

$$L_p(\omega) = L_w(\omega) - 10 \log (4\pi r^2) + \Delta L(\omega)$$ \hspace{1cm} (3)

where ΔL is the excess attenuation. Atmospheric absorption is omitted due to its negligible effect at the given lower frequencies. The excess attenuation for a non-moving, homogeneous atmosphere is a measure of the ground effect only and it is calculated as [17]

$$\Delta L = 10 \log \left(1 + \frac{R_1}{R_2} \exp(ik(R_z - R_1)) \right)$$ \hspace{1cm} (4)

where k and Q are the wavenumber and spherical wave reflection coefficient, respectively. The distances R_1 and R_2 can be defined as

$$R_1 = \sqrt{r^2 + (z - z_s)^2}$$ \hspace{1cm} (5)

$$R_2 = \sqrt{r^2 + (z + z_s)^2}$$ \hspace{1cm} (6)

for given source (z_s) and the receiver (z) heights. The spherical wave reflection coefficient (Q) accounts for the effect of the impedance ground on the acoustic pressure amplitude and phase. The equation for the spherical wave reflection coefficient is

$$Q = \left(\frac{Z \cos \theta - 1}{Z \cos \theta + 1} \right) + \left(1 - \frac{Z \cos \theta - 1}{Z \cos \theta + 1} \right) F(w)$$ \hspace{1cm} (7)

![FFT Sound Pressure Level (L_p)](image1)

![Mean Sound Power Level (L_w)](image2)

Fig. 1. Sound pressure level spectra (L_p) of the gunshot recordings (left) and the mean sound power level (L_w) spectrum (right).
The angle θ is the incident angle as shown in Fig. 2. The function $F(w)$ accounts for the boundary loss factor and it is defined as

$$F(w) = 1 + iw\sqrt{\pi} \exp(-w) \text{erfc}(-iw)$$

with \text{erfc}(-iw) being the complimentary error function

$$\text{erfc}(z) = \frac{1}{\sqrt{2\pi}z} \int_z^\infty \exp(-t^2)dt.$$ \hspace{1cm} (9)

The parameter Z in Eq. (7) is the normalised impedance of the ground, which depends greatly on the ground characteristics. The impedance Z is determined using the model proposed by Horoshenkov et al. [18]. This model calculates the acoustic properties of the impedance ground by considering the ground as a porous media with pores of non-uniform cross-section with the median radius \overline{s}.

In outdoor sound propagation studies, it is common to refer to the effective flow resistivity of the ground (σ_g). The acoustic impedance model proposed in [18] relates the effective flow resistivity to the median pore size as

$$\sigma_g = \frac{8\eta\overline{s}}{C_0} e^{6\overline{s} \log 2}$$ \hspace{1cm} (10)

where η is the dynamic viscosity of air. In the above equation it is common to set the values of porosity (ϕ) and tortuosity (\overline{z}_w) to unity and standard deviation in pore size (\overline{s}) to zero, because for a majority of outdoor ground types their influence on the value of effective flow resistivity is relatively small in comparison with that of the median pore size.

Examples of the excess attenuation spectrum for the given true values, the varying range and grassland impedance, of the input parameters are shown in Fig. 3. It is seen how the value of excess attenuation (ΔL) varies across frequency (ω), exhibiting an oscillatory behaviour with the increase of frequency (ω). The initial geometry effects the interaction pattern, with more oscillations occurring as the range is decreased.

2.3. Generating observed SPL

Observations are generated by assuming that our acoustical model is perfect, or that with given parameters the model would predict the exact observable value i.e. SPL measurement. This assumption allows observations to then be generated by using the predictive model itself with some given noise. Initial observations are generated using the SPL model (Eq. (3)) with the true heights of the source (h_s) and receiver (h_r) set to 2 m and the impedance ground has the effective flow resistivity (σ_s) of 100 kPasm$^{-2}$, which is the typical for grassland [19]. The range (r) is assessed at either 250 m or 500 m. The predicted SPL spectrum for the set parameters including the range (r), are shown in Fig. 4 as black lines. These predicted SPL show a strong resemblance with the experimental data recorded for similar settings using a 9 mm handgun [20], with the differences expected to be due to 1 mm decrease in the pistol calibre and lack of projectile in the case of our pistol. The sound propagation model, Eq. (3), can be expressed as a function of the input parameters

$$y = f(\omega, h_s, r, h_r, \sigma_g, L_w(\omega))$$

Simulated observations are then repeatedly generated by adding a random, but controlled, artificial error to mimic noise within data collection, thus observations, y, are generated via

$$y = f(\omega, h_s, r, h_r, \sigma_g, L_w(\omega)) + \epsilon_i$$

The error applied at every simulation is randomly drawn from the distribution $\epsilon_i \sim N(0, \sigma^2_i)$, with a fixed variance (σ^2_i) set to 5dB. This error term remains constant across frequency (ω). Normal (Gaussian) error is an acceptable error term to use being supported by the central limit theorem. The added term creates observations that can be \pm5dB away from the true value. However, the probability of observing data with such an error decreases the further it moves from the true value. This error value is approximately equal to 10% of the difference between the highest and lowest observable SPL. The range for which the generated observations can be measured are seen via the dashed limits in the plots of the true SPL (dashed lines in Fig. 4).

Fig. 2. Acoustic scenario in the (r, z) geometry.

Fig. 3. Excess attenuation (ΔL) spectra of due to each combination of parameters and impedance ($\sigma_g = 100kPasm^{-2}$) over a logarithmic scale up to a frequency (ω) of 16kHz. The ranges given are 250m (black line) and 500m (magenta line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
For our investigations a small amount of observations \((n = 10)\) are used to test how effective the parameter estimation can be using each statistical technique and little information present in the model. It is known that smaller sample sizes increase the uncertainty present in the estimation techniques. This is a key part in the investigation to compare how applicable this methodology is in practice in the presence of such systematic uncertainty.

In practice it is common to analyse the sound pressure level in octave bands. This analysis will become useful as shown in the following sections. The octave bands used in our analysis are defined in Table 1 in accordance with the ISO 266 [21]. Each band is lowed during visual analysis and scission.

3. Statistical techniques

3.1. Maximum log-likelihood estimation (MLE)

The first statistical method uses the frequentist ideology of maximising the likelihood function at a given parameter. For this, we assume that the observations are distributed normally. This allows us to describe the observations with a normal probability density function (PDF for hereon), the familiar bell-shaped curve, defined as

\[
f_N(x_i | \mu_0, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x_i - \mu_0)^2}{2\sigma^2}\right)
\]

The mean \((\mu_0)\) and variance \((\sigma^2)\) in this case are the true and known values that describe how the observations, e.g. sound pressure or sound pressure level, are distributed. The set of parameters then define a normal distribution, \(\theta = (\mu, \sigma)\), are the values that objective variables the likelihood function attempts to maximise simultaneously. The remaining information required by the likelihood function is the observables, i.e. recorded data. Each new observable brings information into the function, allowing for the likelihood to define a better set of \(\theta\) that describes the likelihood’s of new data [7]. If we define our sample group of observations as \(\mathbf{x} = (x_1, \ldots, x_n)\) the likelihood function can be written as

\[
L(\theta | \mathbf{x}) = \prod_{i=1}^{n} f_N(x_i | \mu, \sigma^2)
\]

(14)

where \(n\) is the total number of observables \((x)\). The function in Eq. (14) can be further simplified with some manipulation to

\[
L(\theta | \mathbf{x}) = (2\pi \sigma^2)^{-\frac{n}{2}} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right)
\]

(15)

Taking the log transform \(\log(L(\theta | \mathbf{x})) \rightarrow \ell(\theta | \mathbf{x})\), gives the log-likelihood function, a better-defined function which is also algebraically easier to compute. The log-likelihood \(\ell(\theta | \mathbf{x})\) can be rewritten as

\[
\log(L(\theta | \mathbf{x})) = \ell(\theta | \mathbf{x}) = -\frac{n}{2} \log(2\pi) \cdots - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2
\]

(17)

It is important to note at this stage the key relationship, and differences between likelihood and probability. The following relationship is known to be true

\[
P(\mathbf{x} | \theta) \equiv L(\theta | \mathbf{x})
\]

(18)

While colloquial in use, the terminology is equally misused as the same thing in daily life whereas each function is doing something different. For any given distribution, \(P(\mathbf{x} | \theta)\) defines the probability for observing data \(\mathbf{x}\), for given set of parameters \(\theta\). Meanwhile, \(L(\theta | \mathbf{x})\) describes the how likely taking the set of parameters inside \(\theta\) is for given values of the observables \(\mathbf{x}\). The important difference is that each function is asking question about the data or parameters values. Manipulation of these statistical ideas is what allows us to perform inferences on our observables and thus study the effects of error and uncertainty on our given, or in a matter of fact any, acoustical scenario.

Our study manipulates the \(\theta\) set in combination with the model that generates \(\mathbf{x}\), to infer parameters from inside the later model. The variance \((\sigma^2)\) is given as known being assumed equal to the initial variance inside our observations. Thus, the variance of

Table 1

<table>
<thead>
<tr>
<th>Octave 1/1 band ((B_n))</th>
<th>Lower limit (Hz)</th>
<th>Centre frequency (Hz)</th>
<th>Upper limit (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_0) (Band 0)</td>
<td>0.24</td>
<td>1</td>
<td>1.41</td>
</tr>
<tr>
<td>(B_1) (Band 3)</td>
<td>1.41</td>
<td>2</td>
<td>2.82</td>
</tr>
<tr>
<td>(B_2) (Band 6)</td>
<td>2.82</td>
<td>4</td>
<td>5.62</td>
</tr>
<tr>
<td>(B_3) (Band 9)</td>
<td>5.62</td>
<td>8</td>
<td>11.2</td>
</tr>
<tr>
<td>(B_4) (Band 12)</td>
<td>11.2</td>
<td>16</td>
<td>22.4</td>
</tr>
<tr>
<td>(B_5) (Band 15)</td>
<td>22.4</td>
<td>31</td>
<td>44.7</td>
</tr>
<tr>
<td>(B_6) (Band 18)</td>
<td>44.7</td>
<td>63</td>
<td>89.1</td>
</tr>
<tr>
<td>(B_7) (Band 21)</td>
<td>89.1</td>
<td>125</td>
<td>177</td>
</tr>
<tr>
<td>(B_8) (Band 23)</td>
<td>177</td>
<td>250</td>
<td>355</td>
</tr>
<tr>
<td>(B_9) (Band 25)</td>
<td>355</td>
<td>500</td>
<td>710</td>
</tr>
</tbody>
</table>

Fig. 4. Predicted SPL \((L_p)\) against frequency \((\omega)\) for the different ranges \((r)\) over a logarithmic scale (solid line). Error margins for observation generation are superimposed (dashed lines).
$\langle \theta | \mathbf{y} \rangle$ is equal to σ_i^2 which was set to 5 dB in Eq. (12). The mean (μ) is also given as known, but uses the given acoustical model in perfect conditions. The mean (μ) is calculated using the same method that generates our sample data, requiring the situation-dependant true values of frequency (ω), source geometry (h_i, r) and effective flow resistivity of the ground (σ_g), but no noise added. This can be used as it is still assumed that, given a set of parameters, the model would predict the perfect result which would also be equivalent to the mean of a data set containing noise. The inference process then relies on the values inside our predictive model (Eq. (3)) would maximise the likelihood to these given set of θ, i.e. which set of parameter values would be most likely.

It is well understood that Bayesian methods become equivalent to frequentist methods as the number of observations becomes large. Limiting the initial information available to the likelihood function allows for investigation into the performance of the MLE (and soon to be discussed MAP) method. The increase in observation size, albeit small, will assess if any improvements can be detected with such a smaller addition of initial information.

The $\omega - r$ space is generated by using given values of each parameter. Frequency points (ω) cover the frequency range for sound generated by the gunshot (see Section 2.2), usually $1 \leq \omega \leq 500$Hz. The r space covers the range of $100\text{m} \leq r \leq 650$hm. The definition of the r space should not be confused with the application of a prior previously discussed in Section 3.2. Other parameters, specifically the source height (h_i) and effective flow resistivity of the ground (σ_g), are allowed to be distributed, i.e. incorporate uncertainty, for further study into their interactions. In the most uncertain case, with both parameters unknown, draws are taken from a uniform distribution for each parameter for every individual simulation run. A uniform distribution, $U\![-a, b]$, creates a distribution between a lower bound (a) and upper bound (b) with an equally weighted probability of drawing any number between these limits. This allows for the physical constraints of reality to be applied without any a priori knowledge, while simulating complete uncertainty around the parameter. The distributions drawn from are

$$\tilde{h}_i \sim U[0.1, 1.0]$$

(19)

$$\tilde{\sigma}_g \sim U[200000, 2000000]$$

(20)

The distribution of the height (Eq. (19)) has its upper bound at 10 m as higher source heights are also known to be subjected to atmospheric influences [17] which the model adopted here does not account for. The distribution of the flow resistivity of the impedance ground (Eq. (20)) is chosen to encompass variations in the experimental data recorded for this type of grassland [19] we are assuming to be present.

The values of the $\omega - r$ space that best maximise the given combination of likelihood parameters (θ) can now be located. According to the most uncertain case, Eq. (17) can be rewritten as

$$\langle \theta | \mathbf{y}, h_i, r, \sigma_g \rangle = \frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma_i^2) \ldots$$

$$- \frac{1}{2\sigma_g^2} \sum_{i=1}^{n} \left(y_j - f\left(\omega_j, \tilde{h}_i, \tilde{r}_j, \tilde{\sigma}_g \right) \right)^2 \quad \text{(21)}$$

In the case when the source height (h_i) and/or impedance (σ_g) are known they simply have the distributions ($\tilde{h}_i, \tilde{\sigma}_g$) replaced with the respective true, and unchanging values ($2m, 100kPasm^{-2}$). This likelihood function uses n observations to generate a $n_{\omega} \times n_r$ space over n_{ω} and n_r points for frequency (ω) and range (r), respectively. In simple terms, the maximised value is located in the space related to the best estimate of r, at a specific frequency for given or unknown source height and impedance.

3.2. Semi-bayesian maximum a Posteriori (MAP)

The second method requires the understanding of Bayes’ theorem. Bayes’ theorem is defined as [10]

$$P(\theta|\mathbf{y}) = \frac{L(\theta|\mathbf{y}) \times P(\theta)}{P(\mathbf{y})} \quad \text{(22)}$$

where $P(\theta|\mathbf{y})$ is the posterior, $P(\mathbf{y})$ is the evidence, $P(\theta)$ is the prior and $L(\theta|\mathbf{y})$ is the likelihood function. The likelihood function is defined the same way as in Section 3.1, while the prior is the PDF of beliefs about θ. The application of a prior is used to import knowledge, or the absence, into the given statistical procedure. The posterior is the PDF that uses these beliefs in combination with the likelihood to generate a probability function of θ for a given set of data. The evidence term normalises the function to a true PDF, however is generally difficult and expensive (computational) to compute. The MAP procedure avoids this by disregarding this term. The only value of interest to us in the posterior is the best estimate which happens to be the easily-obtainable peak of the distribution, which is proportional to the combination of the prior and likelihood. This method reduces Eq. (22) to

$$P(\theta|\mathbf{y}) \propto L(\theta|\mathbf{y}) \times P(\theta) \quad \text{(23)}$$

Removal of the evidence term greatly reduces computational time, without removing the ability to gather a best estimate of a parameter. Similar to the MLE method, the reduced Bayes equation (Eq. (23)) can be log-transformed to

$$\log P(\theta|\mathbf{y}) \propto \log L(\theta|\mathbf{y}) + \log P(\theta) \quad \text{(24)}$$

The log-transformed prior can be better interpreted here as a penalty term. The log of a probability is always negative, increasing in magnitude for a decreasingly small probability. The application of log here reduces the likelihood function at positions where the prior is less-confident. It also reduces the likelihood to $-\infty$ in areas outside of the coverage of the prior, due to the log of zero [10].

The prior applied in this instance is a normal, centred around the mean ($\mu_g = 250m, 500m$) with a standard deviation of 15m, thus the distribution covers approximately $\pm 50m$ either side of the given mean. A completely flat prior could have been used in principle, especially in situations where reality constraints motivate it i.e. a uniform distribution that installs cut-offs at values that are known physical impossibilities. However, a flat normal is already applied, thus uniform priors are deemed unnecessary to the narrative of this paper.

3.3. Performance metrics

To investigate the effectiveness of the inference process and the effects of uncertainties in parameters, we study the errors in relation to the predicted values and the true value. We make use of MATLAB™ and the ShARC supercomputer facilities at the University of Sheffield to repeatedly simulate a small set of observations ($n = 10$), maximise the likelihood over the $\omega - r$ parameter space for given parameter values, either known or randomly drawn from given distributions, then find the best-estimate before and after a prior is applied. The ω space is also analysed in the octave band bounds defined in Table 1.

The error (\tilde{e}_i) is then found as the difference between a simulation’s estimate of the range and the true value of range (r_i)

$$\langle \tilde{e}_i \rangle = (r_i - r) \quad \text{for } i \in [1 \text{, } 1000]$$

(25)
The error is investigated in both relative and absolute terms. The relative error will allow insight into the direction of the incorrect estimations (i.e. whether an under or over estimation was made) while the absolute error is independent of direction.

A substantial number of errors ($n_t = 1000$) are generated to allow the error set to be explored visually and numerically and to minimise the error from the sampling process. Additionally, two more statistics can be investigated: (i) mean absolute error (MAE); and (ii) root mean squared error (RMSE). Both use the previously defined e_i to analyse the inference process across the entire set of errors. The MAE is the arithmetic mean of the modulus of the errors (Eq. (26)), while the RMSE is the root of the arithmetic mean of the square of the errors (Eq. (27)).

$$\text{MAE} = \frac{1}{n_t} \sum_{i=1}^{n_t} |(e_i)|$$ \hspace{1cm} (26)

$$\text{RMSE} = \left(\frac{1}{n_t} \sum_{i=1}^{n_t} (e_i)^2 \right)^{\frac{1}{2}}$$ \hspace{1cm} (27)

The MAE allows for an insight into the overall average error, while the RMSE is another way of calculating the average error, but it is far more punishing to larger errors, i.e. more weight is given to larger errors. Both errors are independent of direction, i.e. whether the average estimate overestimates or underestimates the given true value. Visual analysis will be used to assess the under and/or overestimations that may occur.

4. Results

4.1. Inference using broadband data

The results of the analysis of errors using broadband sound pressure level data are presented in Table 2. This table shows the MAE, RMSE and absolute maximum error for the simulations for the combinations of known or unknown parameter. These data were drawn from the respective error distribution. The results from each statistical method are also compared.

Overall errors estimated while using MLE alone are relatively large, being on average 50% and 60% of the true range when the true range (r') is 250 m and 500 m, respectively. Application of a priori, using the MAP method, greatly reduced errors to within 10% of the true range.

The differences in the MAE and RMSE are negligibly small (< 0.1m) when using the MAP method in all conditions. However, when the true range is 250 m, and both the flow resistivity of the ground (σ_g) and source height (h_s) where initially unknown, a large jump in error can be seen when the MAP method is used. The MAE increased by -15 m, the RMSE by -20 m and the absolute maximum error increased by -100 m. It is likely that the increase in extreme outliers has dragged the average errors particularly in the case when both the source height (h_s) and flow resistivity of the ground (σ_g) have varied due to the uncertainty present. This effect is not seen when the true range (r') is increased to 500 m, which indicates the interaction effects of these uncertainties may either be increased by reducing range, or the opposite, the interfering effects of the uncertainties being reduced as the true range (r') is increased.

The negligible differences between the statistics of error when uncertainties are imported to various parameters, may be influenced by a relatively small sample of observed data ($n = 10$) in the model. Studying interactions with various levels of initial data in the model is outside the scope of this paper, and it would require repetition of the methods used here with such variations present. They also would inherently be affected by the distribution choice, specifically the effective flow resistivity of the ground (σ_g) being a distribution that covers various recorded values for grassland. More acoustically harder grounds urbanised areas, water, can have different effects.

4.2. Visualisation of errors

Visualisation of errors (e_i) is done using three different plots: (i) a PDF of estimates; (ii) a PDF of the absolute errors; and (iii) the cumulative distribution function (CDF from hereon) of the absolute errors. The first allows for insight into the general distribution of where estimates were made in relation to the true value and differences in over and underestimations. The second plot of absolute error defines the probability of the error, no matter whether it is over or under. The CDF of absolute error can be used to visualise the cumulative probability of the defined error. Kernel density estimation (ksdist function in MATLAB®) is used to produce smoothed curves that are visually easier to assess. This is deemed acceptable due to the large sample size in each case ($n_t = 1000$).

Visualisations are presented in Fig. 5 ($r' = 250$m) and Fig. 6 ($r' = 500$m). Each subplot of a given PDF/CDF contains multiple lines, each representing the results for simulations with the varying input uncertainty, i.e. either only r is unknown, or r and σ_g are unknown or r, σ_g and h_s are unknown. The results presented

<table>
<thead>
<tr>
<th>$r'(m)$</th>
<th>$h_s(m)$</th>
<th>σ_g(KPas m$^{-2}$)</th>
<th>Method</th>
<th>MAE(m)</th>
<th>RMSE(m)</th>
<th>Abs. max.(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2</td>
<td>100</td>
<td>MLE</td>
<td>124.74</td>
<td>127.26</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td>MAP</td>
<td>23.53</td>
<td>30.16</td>
<td>96.05</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>122.55</td>
<td>125.64</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>23.53</td>
<td>30.16</td>
<td>96.05</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>123.24</td>
<td>126.48</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>23.58</td>
<td>30.21</td>
<td>96.05</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>120.89</td>
<td>124.71</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>37.85</td>
<td>48.25</td>
<td>202.9</td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>100</td>
<td>MLE</td>
<td>294.43</td>
<td>300.21</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td>MAP</td>
<td>44.63</td>
<td>57.81</td>
<td>211.71</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>295.1</td>
<td>301.21</td>
<td>395.45</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>44.67</td>
<td>57.83</td>
<td>211.72</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>295.9</td>
<td>302.47</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>44.72</td>
<td>57.87</td>
<td>211.72</td>
</tr>
<tr>
<td></td>
<td>\bar{h}_s</td>
<td>100</td>
<td>MLE</td>
<td>300.29</td>
<td>306.63</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>$\bar{\sigma}_g$</td>
<td></td>
<td>MAP</td>
<td>44.77</td>
<td>57.91</td>
<td>211.71</td>
</tr>
</tbody>
</table>
Fig. 5. Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) and CDF of absolute errors (last column) for each simulation of varying uncertainty at \(r = 250 \) m. Top and bottoms rows show the results from using the MLE and MAP methods, respectively. The true range value is superimposed (dashed line) in the PDF plot of estimates. Each line represents which initial parameters were uncertain as defined in each legend.

Fig. 6. Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) and CDF of absolute errors (last column) for each simulation of varying uncertainty at \(r = 500 \) m. Top and bottoms rows show results from using the MLE and MAP methods, respectively. The true range value is superimposed (dashed line) in the PDF plot of estimates. Each line represents which initial parameters were uncertain as defined in each legend.
in Fig. 5 suggest that in the short-range case ($r^* = 250\text{m}$) the ineffectiveness of the sole maximisation of the likelihood (MLE) is obvious (as also seen in Table 2). Estimates are centred around the minimum possible value of r set in the model, with a positive skew allowing for a smaller proportion of better estimates, as well as over-estimations (top-left in Fig. 5). The PDF of absolute error (top and mid rows in Fig. 5) shows that the majority of errors are greater than 100 m, which is confirmed by the CDF of absolute error (top-right in Fig. 5) where there is a 20% chance of getting an error of less than \pm100 m and 80% chance of getting an error of smaller than \pm140 m. The differences between the simulations when all to none of the initial parameters are known are not clear for the MLE method for the true range (r^*) of 250 m (top row in Fig. 5). However, there is some indication that allowing the effective flow resistivity of the ground (σ_{g}) to vary may decrease the error slightly, but the magnitude in which the peak (and distributions generally) is flattened here is too small to state as fact.

The application of a prior (MAP method) greatly improves estimations (bottom row of Fig. 5). The spread of estimates (bottom-left of Fig. 5) is more symmetric around the true range ($r^* = 250\text{m}$), with a negative skew away from this value. When the source height (h_{s}) and effective impedance of the ground (σ_{g}) are unknown, the distribution of estimates is far flatter, yet more symmetric around the true value, showing tails containing more overestimations than the related simulations while using the MLE. This confirms the findings (see Table 2) that the error is increased in the most uncertain simulation due to the allowance of larger overestimations rather than underestimations. The MAP method leads to the PDF of absolute error (bottom and mid row in Fig. 5) becoming flipped, peaking around zero error with tail decreasing toward larger errors. The most uncertain case is less strongly peaked leading to an increase in size and frequency of large errors. All other simulations seem to be highly probable to be less than \pm30 m, with a large drop to a step appearing to around \pm50 m. The likelihood of an error larger than 50 m lower substantial, before tailing out to the maximum error. The CDF (bottom-right of Fig. 5) shows the reduction in error compared to the MLE, with a 20% chance of error of less than \pm5 m and 80% chance of an error less than \pm40 m. These probabilities are weakened by the case where initial parameters are unknown, with only an 80% chance of less than \pm55 m, yet this is substantially better than the MLE case with the least uncertainty. Practical application shows how effective a single simulation could be for inference, giving a user with data ready a value within seconds, with great confidence while using the MAP method. More simulations would be needed for confident predictions with the MLE.

All MAP simulations (see bottom row in Fig. 5) show far less difference between each distribution, with each plot being smoother and almost exactly alike when compared to the MLE results (see top row in Fig. 5) where each plot oscillates over one other i.e. each distribution is higher and lower than the others at multiple points. This indicates that the MAP method may itself smooth out small artefacts from varying the uncertainty in other parameters in the model that are not the direct object of the inference. The MAP method does highlight a reduction in likelihoood in the most uncertain case (see blue plot at the bottom row in Fig. 5), which is not seen in any other simulations. It is not clear what causes this simulation to be so different, but it seems that the increase in degree of uncertainty is the most likely reason for this difference.

Increasing the true range to $r^* = 500\text{m}$ leads to the results shown in Fig. 6. The performance of the MLE method is similar to that observed in the case of $r^* = 250\text{m}$ (see top-left graph in Fig. 5) with a similar distribution of the range and error estimates (see top-left graph in Fig. 6). There is a strong peak at the lowest range that the model accepts, with a decreasing probability as the estimate value increases. The distribution of absolute error (top-mid rows in Fig. 6) shows a strong peak around 300 m tailing off with some negative skew towards small errors. The CDF of absolute error (see top-right in Fig. 6) shows that an increase in range reduces performance, where now there is only a 20% chance of the range being less than \pm250 m out and 80% chance of being greater than \pm250 m. Differences between simulations in the three plots (see top row in Fig. 6) are due to the fact that the uncertainties present are less erratic (or less oscillatory). The peak in each of distribution becomes increasingly flatter as more uncertainty is present (from initial parameters).

The MAP method at this range improves the estimation and reduces the discrepancies between the differing levels of uncertainties from initial parameter selection. The distribution of estimations (see bottom-right graph in Fig. 6) shows a distribution around the true value (r^*) close to normal with a negative skew. There is evidence of another peak in the distribution around 450 m range. The distribution of the absolute error (see bottom-middle graph in Fig. 6) is strongly centred around 5 m, with the second peak around 50 m. There is a long tail in the distribution showing that larger errors (100 m+) are highly unlikely in this case. The CDF (bottom-right graph in Fig. 6) shows the effectiveness of the MAP method for errors with a 20% chance of being within 5 m and an 80% chance of being within 50 m. All of the simulations, of any given initial uncertainty, are near-identical (see bottom row in Fig. 6). Even the most uncertain case (source height (h_{s}) and impedance ground (σ_{g}) being uncertain) is now no longer a visible different distribution, unlike when the true range was less ($r^* = 250\text{m}$) (bottom row in Fig. 5). A recent study by the authors highlighted how the impedance in particular uncertain geometries and statistical behaviour can affect inferences using certain methods [21]. This is likely why the simulations with multiple uncertainties are more strongly affected in the MAP methods at the shorter range ($r^* = 250\text{m}$), yet the increase in range reduces this effect.

4.3. Interactions of uncertainties

Since draws were taken from distributions for the unknown parameters, source height (h_{s}) and/or effective flow resistivity of the ground (σ_{g}), they can be compared to the final estimate determined via the inference. This will enable us to study the sensitivity of such parameter/s while using MLE/MAP methods with the given conditions, i.e. differing range, low initial data source, grassland impedance ground against the final inferred range. Scatter plots are used to compare when either the flow resistivity of the ground (σ_{g}) or source height (h_{s}) are uncertain to their relevant error from the inference (see Figs. 7 and 8). The dots shown in Figs. 7 and 8 correspond to the realisations simulated with the proposed statistical methods. When both the effective flow resistivity of the ground (σ_{g}) and source height (h_{s}) are uncertain, a grayscale surface plot is used (see Fig. 9) to show maps for the error as a function of the range and flow resistivity. These graphs highlight behaviour patterns in the uncertainty that are affecting such inference processes.

The first parameter investigated is the effective flow resistivity of the ground (σ_{g}) taken across all possible values (σ_{g}) against its related absolute error (e). This is achieved by taking the absolute difference from the inferred value and true value while using a drawn value of σ_{g} (see Fig. 7). The MAP method is shown to be far more effective than the MLE method in terms of the value of error. This is true for the both true ranges (r^*) studied in this work. The results presented in Figs. 7 and 8 show that the error is not sensitive to the initial draw of σ_{g}. Although, the MLE results for a
true range $r' = 500$ m tend to have smaller errors when a higher value of the effective flow resistivity (σ_r) is drawn (see right plot in Fig. 7). It is not thoroughly clear why this would be the case. Plotting the draws from the source height (h_s) instead of the flow resistivity of the ground (σ_r) shows similar behaviour (see Fig. 8). The MAP method again has greater accuracy than the
MLE, with no obvious sensitivity to the draw of the source height \((h_s) \) at initialisation. There is some indication that at the range of 500 m the MLE method performs slightly worse as the drawn value of source height \((h_s) \) increases. It is known that the increased height would greatly affect the ground interference patterns, yet an overestimation of 8 m (as 10 m is the maximum overestimated source height allowed) does not seem to prevent the model from inferring the true range (and close to it).

The interactions between the draws and the given error \((e_r) \) are harder to visualise. Fig. 9 plots the error against the source height and effective flow resistivity of the ground. The absolute error is depicted using a colour map with white being no error and black being the maximum error of 180 m and 350 m for the true range of 250 m and 500 m, respectively. Horizontal bands can be seen in the surface plots in Fig. 9. This means that small variations in the source height \((h_s) \) for a given effective flow resistivity of the ground \((\sigma_g) \) do not strongly affect the quality of inference, whereas small variations in the effective flow resistivity of the ground \((\sigma_g) \) for a selected source height \((h_s) \) do. This hints that quantification of the ground impedance may be more important than the source height in situations where both are unknown quantities. These findings are supported by the fact that the so-called “ground effect” is more important for low-height sources than sources at higher altitude, a well-known fact in acoustics, with greatly developed definitions and reasoning explained in well by Solomons [17].

4.4. Inference using octave band data

Additionally, inference is studied in octave frequency bands and compared against that obtained for the broad band spectrum. This enables us to assess the effect that specific frequency restrictions would have on the inference quality. Table 3 presents the error statistics for each combination of known or unknown (and therefore drawn from the respective distribution) parameters. Only the best and worst performing bands (using bandwidths defined in Table 1) are shown. Best and worst are taken to be the smallest and largest values of error respectively. Unlisted bands are only assessed visually later.

As expected, for both the MAE and RMSE, the equally worst performing bands are \(B_8 \) and \(B_9 \) for all the cases considered in this study. These are higher frequency bands in which the sound power of the gun shot is relatively low (see Fig. 1). At the shorter range
From a given distribution and for the given statistical method, was also seen in the MLE for broadband. That was used in the computation of the likelihood, a problem that model choosing the lowest value possible, the lowest value for that was also seen in the MLE for broadband.

The best performing band is the infrasonic band. Bands of filtering to octave bands (see Figs. 10–13). Each figure is for a range which method is used or error statistic analysed. In this range of filtering to octave bands (see Figs. 10–13).

Comparing the broadband results (see Table 2) to the octave band results (see Table 3) suggests that overall the broadband inference is likely to outperform inference via specific octave bands for the considered acoustic and statistical models. This does not however rule out that combinations of octave band windows would allow for better inferences for some types of sources, specifically B_0, B_1 and B_2 for gunshot sources.

Octave band visualisations

Visualisations are completed to assess more in-depth the effects of filtering to octave bands (see Figs. 10–13). Each figure is for a particular statistical method and value of the true range. Each subplot is for a given octave band where each of the plots follow the same rules as before, with each representing the given initial uncertainties. The PDF of estimates are used to assess the octave bands, so both under and over estimates can be detected.

Fig. 10 depicts the PDFs for the MLE method when the true range (r^*) is 250 m. Octave bands B_0, B_1, B_2 and B_3 perform poorly picking up estimates at the minimum value entered into the model. Bands B_4 and B_0 also perform poorly but have tails extending towards to true value (r^*). The distributions created for bands B_2 and B_3 have their peaks at slightly above the minimum value, but their tails have no coverage of the true range ($r^* = 250m$).

The remaining bands, B_0 and B_1 cover much more accurately the true range (r^*) with band B_0 being the best choice for having the most likely point close to the true value. Interestingly, there is a bimodal (i.e. double peaked) PDF present for B_0, with an earlier peak around 120 m which can be associated with strong variations in the gunshot spectrum (see Fig. 1). B_1 has the majority of estimate below the true value but extends to the true value also. It is seen that while using the MLE method (see Fig. 5) inferences can be improved by choosing the best estimates from these top-performing bands (B_0, B_1). Variation between simulations of differing input uncertainty is negligible in the case of the MLE method.

Fig. 11 presents the PDFs for the error estimated using the MAP method for the true range $r^* = 250$ m. These results follow the same behaviour as seen in the case of the MLE (see Fig. 10) but with some improvements. The poor performing bands remain the same as in the case of the MLE, while the better performing bands (B_0, B_1) have larger probabilities of capturing the true range (r^*). In comparison with the MLE, the PDF for band B_1 is shifted closer to the true range. The PDF for band B_0 is accurately centred around the true value, but the bimodality observed in the case of MLE is now removed. The increased accuracy in the lower bands could be due to the physical interactions, i.e. excess attenuation, remaining constant at the lower frequency ranges.

Increasing the true range to $r^* = 500$ m changes the PDFs considerably especially when using the MLE (see Fig. 12). The PDFs for bands B_0, B_1 and B_2 exhibit bimodality. The two bands that can cover well the true estimate (B_0, B_1) exhibit relatively strong bimodality. In the case of band B_0 the dominant peak is around 200 m whereas the secondary peak is close to the true range. This behaviour can hinder the convergence to the true estimate.

The application of a prior in the MAP addresses the issues experienced with the MLE method. Fig. 13 illustrates that the use of limited prior knowledge removes the bimodality and leaves only one peak in the PDF for bands B_0 and B_1 close to the true estimate. The great increase in accuracy is even more likely to be due to the physical interaction patterns, which become even more constant at the extended range. The application of the MAP to other bands does not offer any improvement and results in a relatively large error.

The existence of the bimodal distribution is believed to be created by the generation of two distinct normal distributions, from the normal likelihood function (not the uncertainty – as a data doped with uniform uncertainty most times still produce normally distributed data) that are interfering with each other. Their appearance is likely due to strong interactions present at such combinations of parameters in the model.
Fig. 10. Kernel distributions for the PDF of estimates, using the MLE method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at $r/C_3 = 250$ m. The true range value is superimposed (dashed line) in the PDF plot of estimates.

Fig. 11. Kernel distributions for the PDF of estimates, using the MAP method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at $r/C_3 = 250$ m. The true range value is superimposed (dashed line) in the PDF plot of estimates.
Fig. 12. Kernel distributions for the PDF of estimates, using the MLE method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at \(r = 500 \text{m} \). The true range value is superimposed (dashed line) in the PDF plot of estimates.

Fig. 13. Kernel distributions for the PDF of estimates, using the MAP method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at \(r = 500 \text{m} \). The true range value is superimposed (dashed line) in the PDF plot of estimates.
5. Conclusions

The application of a prior to infer the true range from the sound pressure level data of a gunshot recorded on a single microphone in the presence of porous ground reduces the average error from almost 50% to within 10% of the true range event when initial information is limited to a small number of observations, e.g. \(n = 10 \). The MLE performs poorly because it has the tendency to choose repeatedly the smallest range possible in the model. There is a possibility for this method to become more accurate as more data for a wider range of porous grounds is made available. Application of a prior, even a flat one like in this study, greatly reduces the hindrance of parameter uncertainties. Although at the shorter range \((r^* = 250m) \), the average error was only reduced to \(-15\%\) when all parameters were uncertain, indicating that shorter ranges are still more influenced by high uncertainty. Both the MLE (as long as the observation size was greatly increased) \& MAP techniques are widely applicable to other acoustical settings, yet would provide a substantially effective basis to methods that incorporate learning algorithms.

The study of the interactions between uncertain parameters reveals that exact quantification of individual unknown parameters is not always necessary. Only at the shorter range \((r^* = 250m) \) either the source height \((h_s) \) or impendence ground \((\sigma_d) \) needs quantifying to improve the inference quality as it was shown that when the both parameters \((h_s, \sigma_d) \) were uncertain a notable increase in error could be observed. Further investigation into this dual uncertainty shows that the effective flow resistivity of the ground would be the preferential parameter to be quantified. This parameter seems more significant. An increasing degree of uncertainty in the adopted acoustical model becomes more influential as the range shortens.

Use of octave filtering reveals those bands which are responsible for poor or more efficient inferences. In general, limiting the analysis to a single octave band results in poor performance in terms of the MAE and RMSE in comparison with a broadband spectrum analysis. However, the PDFs of the infrasonic bands (see \(B_0, B_1 \) in Table 1) exhibit strong likelihoods on, and closely around, the given true range, especially for the MLE method, than when using the broadband spectrum. Combinations of these octave bands would likely be more effective for the inference. A large portion of energy output of a firearm exists in the infrasonic frequency range. As highlighted in recent works [6], there is strong evidence to suggest that combining octave windows between in the low and infrasonic, frequency range will greatly improve parameter inference for firearms. Usual techniques try to use information from the supersonic projectile (bullet) which is good for 3D problems (location via miss angle), but may not actually be the best method. The lower frequency output of the firearm going off is likely to less affected by possible interferences that can generate mid and high frequency noises. This could also improve detection in more realistic environments (i.e. inhomogeneous atmosphere).

The real-life application to small arms fire is apparent. Unlike current practices [4,5], this technique does not rely on the make, model, barrel rifling etc. This makes it appropriate to such defensive security programs where quantification of the firearm would likely be implausible, but prior information of the detection zone would be readily accessible. Study into larger firearms, and other small arms fire, will help confirm the best combination of octave bands suitable for specific purposes. The main benefit of this approach is that it relies on a single receiver which can be a smartphone or low-cost microphone connected to a basic microcontroller. It should also be stated that these methods would be effective for other low frequency sources, such as the natural occurrences of earthquakes, volcanic eruptions and thunder, or man-made sources like windfarms. Further study of applications to a broader range of sources would be beneficial to test this idea further and expand it to cases where an array of receivers is used. This study was limited to grassland. Other harder grounds can have different effects on the quality of inference methods proposed here. These proposed inference methods are not specifically exclusive to application to firearms. These can be extended to other low frequency sources such as drones and sources of environmental noise. Higher frequency sources deserve more extensive studies to assert such claims.

CRediT authorship contribution statement

Jordan A. Parry: Data curation, Writing - original draft, Visualization, Investigation. Kirill V. Horoshenkov: Supervision, Writing - review & editing. Duncan P. Williams: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author/s acknowledge the support of the UK’s Defense Science and Technology Laboratory (Dstl) and Engineering and Physical Sciences (EPSRC) CASE studentship award to the University of Sheffield. The authors are also grateful to Prof. Jeremy Oakley from the Department of Mathematics and Statistics at the University of Sheffield for his useful comments on the statistical aspects of this work, and to fellow PhD student, Liam Grimmer (Department of Physics and Astronomy) for assistance in using the ShARC computing facilities at the University of Sheffield.

References